Tetrahedron Letters, Vol.26, No.15, pp 1901-1904, 1985 Printed in Great Britain 0040-4039/85 \$3.00 + .00 ©1985 Pergamon Press Ltd.

THE SYNTHESIS OF QUINOLINES FROM N-ALKYLFORMANILIDES AND ELECTRON-RICH ALKENES

Otto Meth-Cohn

National Chemical Research Laboratory, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, Republic of South Africa.

Summary: N-Methylformanilide in phosphoryl chloride reacts with ketones, aldehyde and ketone enamines or enol acetates to give N-methylquinolinium salts in good yields.

In 1925, Otto Fischer<sup>2a</sup> solved the long-standing riddle<sup>2b</sup> of the action of POCl<sub>3</sub> on <u>N</u>-methylacetanilide (1) which gave a red dye (3), by way of an isolable quinol-inium salt (2).



The reaction may be rationalised by attack of the  $\alpha$ -chloroenamine (5) on its tautomeric iminium ion (4) followed by cyclisation and loss of <u>N</u>-methylanilinium hydrochloride to give the salt (2) (Scheme 1).

It was the unravelling of this problem that led to Vilsmeier's discovery<sup>3</sup> of the formylation method named after him, since he mistakenly assumed that ortho-acylation of the anilide ring had occurred to account for the quinolinium salt (2) formation. Surprisingly, this approach to quinoline synthesis has lain dormant for 60 years. I herein

describe the application of this process which opens up a versatile approach to useful quinolines.



Scheme 1

Using <u>N</u>-methylformanilide (MFA) in POCl<sub>3</sub> as the acylating agent a variety of electron rich alkenes ( CH=C X, where X is an oxygen or nitrogen function) react readily to yield quinolines (6), a process rationalised in Scheme  $2^4$ .



That the dihydro-compound (7), (itself an enamine) or the 3,4-dihydro- isomer is involved is indicated by the fact that when  $R^{1}$  is hydrogen, further formylation occurs to give the 3-formylquinoline (8)<sup>5</sup>.

In this way aryl methyl ketones give the quinolinium salts (8) in reasonable yields (Table, expts. 1-3) while aldehyde and ketone enamines (added to the other two premixed reagents dropwise below  $10^{\circ}$ ) give the salts (6) (Table, expts. 4-6). Vinyl acetate reacts smoothly and efficiently to give the diacylated quinolinium salt (9) containing a CHCl<sub>2</sub>



instead of the expected 3-aldehyde; albeit the compound reacts as for the aldehyde (e.g. phenylhydrazone derivative, m.p.  $221-2^{\circ}$ ). N-Vinylpyrrolidone was ineffective in this reaction.

The full scope of this simple reaction is under active investigation.

| Expt. | Reagent <sup>a</sup>                 |       |        | Conditions <sup>b</sup> |       | Salt (Y = $PF_6$ ) <sup>C</sup> |              |                                   | Yield | M.p.    |
|-------|--------------------------------------|-------|--------|-------------------------|-------|---------------------------------|--------------|-----------------------------------|-------|---------|
|       | Alkene                               | MFA   | P0C1 3 | Time                    | Temp. | No                              | R¹           | R <sup>2</sup>                    | %     | °C      |
|       | (10 mmol)                            | mmo 1 | ml     | min.                    | °C    |                                 |              |                                   |       |         |
| 1     | PhAc                                 | 40    | 5      | 10                      | 60    | 8                               | _            | Ph                                | 69    | 223-6   |
| 2     | p-MeC <sub>6</sub> H <sub>4</sub> Ac | 40    | 5      | 10                      | 55    | 8                               | -            | р-МеС <sub>6</sub> Н <sub>4</sub> | 32    | 215-6   |
| 3     | 2-ThAc                               | 22    | 5      | 150                     | 20    | 8                               | -            | 2-Th                              | 63    | 263     |
| 4 /   | $\sim M$                             | 10    | 4      | 10                      | 20    | 6                               | Et           | Н                                 | 35    | 156-8   |
| 5 /   | M                                    | 10    | 4      | 10                      | 60    | 6                               | Me           | Et                                | 60    | 166-7   |
| 6     | М                                    | 10    | 4      | 10                      | 70    | 6                               | <b>-(</b> CH | 2)4 -                             | 79    | 199~200 |
| 7     | OAc                                  | 10    | 4      | 10                      | 60    | 9                               | -            | -                                 | 93    | 193-6   |

 TABLE

 Formation of quinolinium salts (6, 8 or 9) from MFA, POCl3 and activated alkenes

a M = morpholino, Th = thienyl. b After reaction the mixture was poured into ice water, 10-15 mls EtOAc and then 1.5 g NH  $_{4}$ PF  $_{6}$  added. After 0.5 h stirring at RT the solution was filtered, washed with water and a little EtOAc and the residue recrystallised from MeCN/ EtOAc. c All new compounds gave correct CHN, IR and  $^{4}$ H NMR data.

## **References and Footnotes**

- Part 13 in the series 'A Versatile New Synthesis of Quinolines and Related Fused Pyridines'. Part 12: 0. Meth-Cohn and K.T. Westwood, <u>J. Chem. Soc., Perkin Trans. 1</u>, 1984, 1173.
- (a) O. Fischer, A. Müller, and A. Vilsmeier, <u>J. Prakt. Chem.</u>, 1925, 109, 69. (b)
   M.C. Friedel, <u>Bull. Soc. Chim. Fr.</u>, 1896, 11, 1028.
- 3. A. Vilsmeier and A. Haack, Chem. Ber., 1927, B60, 119.
- 4. The interaction of the alkene with the Vilsmeier reagent (6) may be viewed either as a concerted [4+2] cycloaddition or as a stepwise acylation and ring-closure.
- 5. It is also conceivable that diacylation of the substrate precedes cyclisation.

(Received in UK 7 February 1985)